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*EIA, Annual Energy Outlook 2016

World net electricity generation by fuel, 2012-40 
(trillion kWh)*

World net electricity generation from renewable power by fuel, 
2012-40 (trillion kWh)*
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Motivation
Electricity mix gradually shifts to lower-carbon options
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High variability in the renewables capacity factor 

• Increasing contribution of intermittent renewable power 
generation in the grid makes it important to include 
operational details at the hourly (or sub-hourly) level in 
long term planning models to capture their variability.



A set of existing and potential generators with the respective
• generation technology*

• location, if applicable
• nameplate capacity
• age and expected lifetime
• CO2 emission 
• operating costs
• investment cost, if applicable
• operating data

• if thermal: ramping rates, operating limits, spinning and 
quick-start maximum reserve

• If renewable: capacity factor 

if potential:
nuclear: steam turbine
coal: IGCC w/ or w/o carbon capture
natural gas: 
 gas-fired combustion turbine,
 combined cycle w/ or w/o carbon capture
solar: 
 photo-voltaic
 concentrated solar panel
wind turbines

Problem Statement
Given a region with:

* Assume no hydropower

if existing: 
nuclear: steam turbine
coal: steam turbine
natural gas: 
 steam turbine, 
 gas-fired combustion 

turbine, 
 and combined cycle
solar: photo-voltaic
wind turbines
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Problem Statement
Given:

• Projected load demand over the time-horizon at 
each location

• Distance between locations
• Transmission loss per mile

Find:
• When, where, which type and in how 

many generators to invest
• When to retire the generators
• Whether or not to extend their lifetime 
• Power flow between locations 
• Detailed operating schedule 

in order to minimize the overall 
operating, investment, and 
environmental costs
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Modeling Strategies 
To tackle the multi-scale aspect and reduce the size of the model

• Time scale approach:
• 1 representative cycle per season 

(e.g., a day or a week) with hourly 
level information

• Region and cluster 
representation

• Area represented by a few zones 
• Potential locations are the 

midpoint in each zone
• Clustering of generators*

• Transmission representation
• Flow in each line is determined by 

the energy balance between each 
region r.

• This approximation ignores 
Kirchhoff’s Circuit Law

*Palmintier, B.S., Webster, M.D., Heterogeneous unit 
clustering for efficient operational flexibility modeling, 2014 5



MILP Model
Summary of constraints:

• Energy balance: ensures that the sum of instantaneous power generated at region r plus the net 
power flow being sent to this region equal the  load demand plus a slack for curtailment.

• Capacity factor: limits the generation of renewable generators to be equal to a given fraction of 
the capacity in each hour.

• Unit commitment constraints: compute the startup and shutdown, operating limits and ramping 
rates for thermal generators.

• Operating reserve constraints : determine the maximum contribution per thermal generator for 
spinning and quick-start reserves, and the minimum total operating reserves.

• Investment constraints : ensure that the planning reserve and renewable energy contribution 
requirements are satisfied, and limit the yearly installation per generation type.

• Constraints of number of generators: define the number of generators that are operational, built, 
retired, and have their life extended at each time period t.
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Continuous variables: 
• Power output at sub-period s
• Curtailment generation slack at s
• Power flow  between regions at s
• Deficit from renewable quota at t 
• Spinning reserve at s
• Quick-start reserve at s

Integer variables: 
• no. of generators installed at period t
• no. of generators built at  t
• no. of generators retired at t
• no. of generators with life extended at t
• no. of generators ON at sub-period s
• no. of generators starting up at s
• no. of generators shutting down at s



MILP Model
Objective function: 

Minimization of the net present cost over the planning horizon comprising: 

• Variable operating cost

• Fixed operating cost

• Startup costs

• Cost of investments in new generators

• Cost to extend the life of generators that achieved their expected lifetime 

• Fuel consumption

• Carbon tax for CO2 emission

• Penalty for not meeting the minimum renewable annual energy production requirement 

Even with the approximations adopted, this is still a very large MILP model. 
In order to allow longer representative cycles per season, we propose a decomposition 

algorithm based on Nested Benders Decomposition*. 
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Continuous variables: 
• Power output at sub-period s
• Curtailment generation slack at s
• Power flow  between regions at s
• Deficit from renewable quota at t 
• Spinning reserve at s
• Quick-start reserve at s

Integer variables: 
• no. of generators installed at period t
• no. of generators built at  t
• no. of generators retired at t
• no. of generators with life extended at t
• no. of generators ON at sub-period s
• no. of generators starting up at s
• no. of generators shutting down at s

*Birge, J.R., Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs, 1985
Pereira, M.V.F., Pinto, L.M.V.G, Multi-stage stochastic optimization applied to energy planning, 1991
Sun & Ahmed, Nested Decomposition of Multistage Stochastic Integer Programs with Binary State Variables, 2016



Nested Decomposition for Mixed-Integer 
Multi-period Problems

Basic idea:

• This algorithm decomposes the problem by time period, which in this case is by
year.

• It consists of Forward and Backward Passes.

• The Forward Pass solves the problem in myopic fashion (1 year time horizon).

• The Backward Pass projects the problem onto the subspace of the linking

variables by adding cuts.

Birge, J.R., Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs, 1985
Pereira, M.V.F., Pinto, L.M.V.G, Multi-stage stochastic optimization applied to energy planning, 1991
Zou, J., Ahmed, S., Sun, X.A., Nested Decomposition of Multistage Stochastic Integer Programs with Binary State Variables, 2016 8



Nested Decomposition Algorithm
1. Set iteration k = 1, and tolerance ϵ1.

2. Solve the Forward Pass for time 
periods t = 1, …, T, and store the 
fixed values for         and           
.              .                  

3. Compute upper bound.

4. Solve the Backward Pass for time 
periods t = T, …, 1, and generate the 
cuts (expected future cost).

5. Compute lower bound.

6. If                          , STOP.

7. If not, set k = k+1, go back to step 2.

Solve Forward 
Pass

t = 1 to t = T

Solve 
Backward Pass

t = T to t = 1
LBk

UBk

If
Stop

YesNo
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Case Study: ERCOT (Texas)
• 30 year time horizon (1st year is 2015)

• Data from ERCOT database

• Cost information from NREL (Annual Technology 
Baseline (ATB) Spreadsheet 2016

• All costs in 2015 USD

• Regions:
• Northeast (midpoint: Dallas)

• West (midpoint : Glasscock County)

• Coastal (midpoint: Houston)

• South (midpoint : San Antonio)

• Panhandle (midpoint : Amarillo)

• Fuel price data from EIA Annual Energy Outlook 
2016 - Reference case

• No imposed carbon tax 

• No renewable generation quota requirement

• Maximum transmission line capacity 10
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Algorithm Performance 

Full-space MILP Model
Integer variables: 413,644
Continuous variables: 
594,147
Equations: 1,201,761

Solver: CPLEX 12.6.3
optcr: 1%
CPU Time: 2.1 hours
Optimality gap: 0.55%

Optimality gap over solution time 

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0 0.5 1 1.5 2 2.5 3

O
pt

im
al

ity
 g

ap
 (%

)

CPU Time (hrs)

Benders cut

Lagrangean cut

Stregthened Benders cut

Pre-generated + Benders cut

Full-space MILP

Max: 15 iterations
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1 representative day per season

Optimality gap over solution time 

Max: 10 iterations

Full-space MILP Model
Integer variables: 2,901,96
Continuous variables: 
4,136,547
Equations: 8,476,641

Solver: CPLEX 12.6.3
optcr: 1%
CPU Time: Out of memory!
(Does not solve)

1 representative week per season



Results
• 1 representative week per season

Total cost: 
$198.0 billions

• 61-fold increase in PV-
solar capacity

• 31% increase in natural 
gas combined-cycle 
capacity

• 6% decrease in wind
capacity

• 30% decrease in natural 
gas steam turbine
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Conclusions
• Time scale, region and clustering approaches reduce considerably the size of the 

MILP planning model.

• Decomposition algorithm greatly speeds up the solution, and allows longer 
representative cycles per season.

• For ERCOT region, future growth in generation capacity will be met by a portfolio 
of different generation technologies.
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